Background: Two independent coding variants in the apolipoprotein L1 gene (APOL1), G1 and G2, strongly associate with nephropathy in African Americans; associations with cardiovascular disease are more controversial. Although APOL1 binds plasma high-density lipoproteins (HDLs), data on APOL1 risk variant associations with HDL subfractions are sparse.
Methods: Two APOL1 G1 single nucleotide polymorphisms and the G2 insertion/deletion polymorphism were genotyped in 2010 Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study participants with nuclear magnetic resonance spectroscopy-based lipoprotein subfraction measurements. Linear regression was used to model associations between numbers of APOL1 G1/G2 risk variants and HDL subfractions, adjusting for demographic, clinical and ancestral covariates.
Results: Female sex and higher percentage of African ancestry were positively associated with the number of APOL1 G1/G2 risk alleles. In the unadjusted analysis, mean (standard error) small HDL concentrations (μmol/L) for participants with zero, one and two G1/G2 risk alleles were 19.0 (0.2), 19.7 (0.2) and 19.9 (0.4), respectively (P = 0.02). Adjustment for age, sex, diabetes and African ancestry did not change the results but strengthened the statistical significance (P = 0.004). No significant differences in large or medium HDL, very low-density lipoprotein or low-density lipoprotein particle concentrations were observed by APOL1 genotype.
Conclusions: Greater numbers of APOL1 G1/G2 risk alleles were associated with higher small HDL particle concentrations in African Americans. These results may suggest novel areas of investigation to uncover reasons for the association between APOL1 risk variants with adverse outcomes in African Americans.
Keywords: APOL1; chronic kidney disease; ethnic disparities; genetics.
© The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.