Objective: Prolonged sedentary time (ST) might be contributing to the diabetes epidemic, but most studies have been cross-sectional and few have objectively measured ST. The purpose of this study was to evaluate cross-sectional and 5-year longitudinal relationships between ST and metabolic parameters and outcomes.
Research design and methods: This was an analysis of 2,027 Coronary Artery Risk Development in Young Adults (CARDIA) study participants (aged 38-50 years, 57% female, and mean BMI of 29.0 ± 7.0 kg/m(2)) with accelerometry data (≥4 days with ≥10 h/day) measured at the year 20 follow-up exam (2005-2006). Metabolic variables (fasting glucose, fasting insulin, 2-h postchallenge glucose, HOMA of insulin resistance [HOMA-IR], and HbA1c) and outcomes (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], prediabetes by HbA1c, and diabetes) were assessed concurrently and 5 years later.
Results: Average ST was 8.1 ± 1.7 h/day or 55 ± 10% of wear time. Each additional hour per day of ST was cross-sectionally associated with a 3% higher fasting insulin and HOMA-IR (both P < 0.01) but not 5-year changes in metabolic parameters. Having ≥10 h/day vs. <6 h/day of ST was associated with an odds ratio (OR) = 2.74 (95% CI 1.13, 6.62) for IGT and an OR = 3.80 (95% CI 1.39, 10.35) for diabetes. ST was not associated with prevalent IFG, prevalent prediabetes by HbA1c, or 5-year incidence of any metabolic outcomes (all P > 0.05).
Conclusions: ST was independently related to insulin, HOMA-IR, and prevalent diabetes and IGT but did not predict 5-year changes in metabolic parameters or incidence of metabolic outcomes. These results suggest that higher ST may not be a risk factor for future metabolic outcomes, but more research with repeated ST measurement and longer follow-up is needed.
© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.