Understanding how a single genome creates and maintains distinct phenotypes is a central goal in evolutionary biology. Social insects are a striking example of co-opted genetic backgrounds giving rise to dramatically different phenotypes, such as queen and worker castes. A conserved set of molecular pathways, previously envisioned as a set of 'toolkit' genes, has been hypothesized to underlie queen and worker phenotypes in independently evolved social insect lineages. Here, we investigated the toolkit from a developmental point of view, using RNA-Seq to compare caste-biased gene expression patterns across three life stages (pupae, emerging adult and old adult) and two female castes (queens and workers) in the ant Formica exsecta. We found that the number of genes with caste-biased expression increases dramatically from pupal to old adult stages. This result suggests that phenotypic differences between queens and workers at the pupal stage may derive from a relatively low number of caste-biased genes, compared to higher number of genes required to maintain caste differences at the adult stage. Gene expression patterns were more similar among castes within developmental stages than within castes despite the extensive phenotypic differences between queens and workers. Caste-biased expression was highly variable among life stages at the level of single genes, but more consistent when gene functions (gene ontology terms) were investigated. Finally, we found that a large part of putative toolkit genes were caste-biased at least in some life stages in F. exsecta, and the caste-biases, but not their direction, were more often shared between F. exsecta and other ant species than between F. exsecta and bees. Our results indicate that gene expression should be examined across several developmental stages to fully reveal the genetic basis of polyphenisms.
Keywords: RNA sequencing; caste; gene expression; genomics; life stages; social insects.
© 2015 European Society For Evolutionary Biology.