Transfused older stored red blood cells improve the clinical course and outcome in a canine lethal hemorrhage and reperfusion model

Transfusion. 2015 Nov;55(11):2552-63. doi: 10.1111/trf.13213. Epub 2015 Jul 15.

Abstract

Background: In canine models, transfused older stored red blood cells (RBCs) hemolyze in vivo resulting in significantly increased intravascular cell-free hemoglobin (CFH) and non-transferrin-bound iron (NTBI). During canine bacterial pneumonia with septic shock, but not in controls, older stored RBCs were associated with significantly increased lung injury and mortality. It is unknown if in shock without infection transfusion of older RBCs will result in similar adverse effects.

Study design and methods: Two-year-old purpose-bred beagles (n = 12) were transfused similar quantities of either older (42-day) or fresher (7-day) stored universal donor canine RBCs 2.5 hours after undergoing controlled hemorrhage (55 mL/kg).

Results: With older transfused RBCs, CFH (p < 0.0001) and NTBI (p = 0.004) levels increased, but lung injury (p = 0.01) and C-reactive protein levels (p = 0.002) declined and there was a trend toward lower mortality (18% vs. 50%). All three deaths after transfused fresher RBCs resulted from hepatic fractures. Lowered exogenous norepinephrine requirements (p < 0.05) and cardiac outputs (p < 0.05) after older transfused RBCs were associated with increased CFH levels that have known vasoconstrictive nitric oxide scavenging capability.

Conclusions: In hemorrhagic shock, older RBCs altered resuscitation physiology but did not worsen clinical outcomes. Elevated CFH may lower norepinephrine requirements and cardiac outputs ameliorating reperfusion injuries. With hemorrhagic shock, NTBI levels persist in contrast to the increased clearance, lung injury, and mortality in the previously reported infection model. These preclinical data suggest that whereas iron derived from older RBCs promotes bacterial growth, worsening septic shock mortality during infection, release of CFH and NTBI during hemorrhagic shock is not necessarily harmful.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Blood Preservation
  • Dogs
  • Erythrocyte Transfusion / methods*
  • Erythrocytes / physiology*
  • Humans
  • Random Allocation
  • Reperfusion Injury / therapy*
  • Shock, Hemorrhagic / therapy*