MicroRNAs (miRNAs) play a significant role in ischemic heart disease. Animal models of left ventricular (LV) ischemia demonstrate a unique miRNA profile; however, these models have limitations in describing human disease. In this study, we performed next-generation miRNA and mRNA sequencing on LV tissue from nine patients undergoing cardiac surgery with cardiopulmonary bypass and cardioplegic arrest. Samples were obtained immediately after aortic cross clamping (baseline) and before aortic cross clamp removal (postischemic). Of 1,237 identified miRNAs, 21 were differentially expressed between baseline and postischemic LV samples including the upregulated miRNAs miR-339-5p and miR-483-3p and the downregulated miRNA miR-139-5p. Target prediction analysis of these miRNAs was integrated with mRNA expression from the same LV samples to identify anticorrelated miRNA-mRNA pairs. Gene enrichment studies of candidate mRNA targets demonstrated an association with cardiovascular disease, cell death, and metabolism. Therapeutics that intervene on these miRNAs and their downstream targets may lead to novel mechanisms of mitigating the damage caused by ischemic insults on the human heart.
Trial registration: ClinicalTrials.gov NCT00985049.
Keywords: mRNA; microRNA; myocardial infarction; sequencing.
Copyright © 2015 the American Physiological Society.