Converging lines of evidence suggest that paraoxonase-1 (PON-1) may confer protection against inflammatory and oxidative challenge which, in turn, plays a key-role in the onset and progression of dementia. The aim of this study was to evaluate whether serum PON-1 paraoxonase/arylesterase activities might predict the clinical conversion of mild cognitive impairment (MCI) to late-onset Alzheimer's disease (LOAD) or vascular dementia (VAD). Serum paraoxonase and arylesterase activities were measured by spectrophotometric assays at baseline in 141 MCI patients (median age: 77 years; interquartile range 71-81) and in 78 healthy controls (median age: 76 years; interquartile range 73-79). After 2 years of follow-up, 86 MCI remained stable (MCI/MCI), 34 converted to LOAD (MCI/LOAD), whereas 21 converted to VAD (MCI/VAD). Baseline arylesterase activity was lower in all MCI groups compared with controls (all p < 0.01), whereas paraoxonase activity was lower in MCI/VAD group compared to controls (p < 0.05) and MCI/MCI patients (p = 0.009). Low paraoxonase and arylesterase activities (I quartile) were associated to higher risk of conversion to VAD (OR: 3.74, 95% CI: 1.37-10.25 and OR: 3.16, 95% CI: 1.17-8.56, respectively). Our results suggest that in MCI patients low PON-1 activity might contribute to identify individuals susceptible to develop vascular dementia.
Keywords: Alzheimer's disease; arylesterase activity; mild cognitive impairment; paraoxonase activity; paraoxonase-1; vascular dementia.
© 2015 International Society for Neurochemistry.