Neurotensin signaling stimulates glioblastoma cell proliferation by upregulating c-Myc and inhibiting miR-29b-1 and miR-129-3p

Neuro Oncol. 2016 Feb;18(2):216-26. doi: 10.1093/neuonc/nov114. Epub 2015 Jul 14.

Abstract

Background: Neurotensin (NTS) and its primary receptor NTSR1 are implicated in cancer progression. Aberrant expression of NTS/NTSR1 contributes to the proliferation of glioblastoma cells; however, the mechanism is not fully understood.

Methods: Microarray and real-time PCR were performed to identify the NTS-regulated micro (mi)RNAs. The targets of the miRNAs were identified by luciferase assays and immunoblot analysis. The c-Myc binding sites in the miR-29b-1 and cyclin-dependent kinase (CDK)4 promoters were identified through chromatin immunoprecipitation assay. Cell proliferation was evaluated by Cell Counting Kit-8 assay and flow cytometry analysis. An orthotopic xenograft model demonstrated the role of NTS/NTSR1 and miRNAs in glioblastoma growth in vivo.

Results: Pharmacological inhibition or small interfering NTSR1 treatment blocked glioblastoma cell cycle progression in the G1 phase with a concomitantly decreased expression of CDK6, CDK4, and c-Myc. Knockdown of NTSR1 increased the expression of miR-29b-1 and miR-129-3p, which were responsible for the decreased CDK6 expression. NTS/NTSR1 signaling activated the transcription factor c-Myc in U87 cells, leading to increased CDK4 expression and repressed miR-29b-1 expression. Knockdown of NTSR1 decreased the glioblastoma growth in vivo and significantly prolonged the survival time of the tumor-bearing mice, an effect that can be largely reversed by antagomir.

Conclusions: Our study showed a novel regulatory mechanism of NTS/NTSR1, an upstream signaling of miRNAs and c-Myc, in glioblastoma progression. The inhibition of the NTSR1 function or the upregulation of miR-29b-1 and miR-129-3p expression impaired glioma cell proliferation. These results suggested that the NTS/NTSR1/c-Myc/miRNA axis may be a potential therapeutic target for glioblastoma therapy.

Keywords: cell cycle; glioblastoma; miRNAs; neurotensin; signal transduction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Blotting, Western
  • Cell Cycle
  • Cell Proliferation
  • Chromatin Immunoprecipitation
  • Glioblastoma / genetics
  • Glioblastoma / metabolism
  • Glioblastoma / pathology*
  • Humans
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • MicroRNAs / genetics*
  • Neurotensin / genetics
  • Neurotensin / metabolism*
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism*
  • RNA, Messenger / genetics
  • RNA, Small Interfering / genetics
  • Real-Time Polymerase Chain Reaction
  • Receptors, Neurotensin / antagonists & inhibitors
  • Receptors, Neurotensin / genetics
  • Receptors, Neurotensin / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • MIRN29a microRNA, human
  • MicroRNAs
  • Mirn129 microRNA, human
  • Proto-Oncogene Proteins c-myc
  • RNA, Messenger
  • RNA, Small Interfering
  • Receptors, Neurotensin
  • neurotensin type 1 receptor
  • Neurotensin