Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury

J Pharmacol Exp Ther. 2015 Oct;355(1):32-47. doi: 10.1124/jpet.115.226043. Epub 2015 Jul 16.

Abstract

Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1-replete or -deficient states would alter vascular function in a mouse model of low nitric oxide (NO)-high angiotensin II (AngII)-induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1-0.2 mg/ml in drinking water at days 1-11) plus AngII (0.7-2.8 mg/kg per day via an osmotic minipump at days 8-11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1(-/-) mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1(-/-) mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1(-/-) mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1(-/-) versus WT mice, further increased with L-NAME + AngII, and not affected by EPL. Vascular relaxation to the NO donor sodium nitroprusside was increased with L-NAME + AngII in WT mice but not in cav-1(-/-) mice. Plasma aldosterone levels increased and cardiac MR expression decreased in L-NAME + AngII treated WT and cav-1(-/-) mice and did not change with EPL. Thus, during L-NAME + AngII induced hypertension, MR blockade increases contraction and alters vascular relaxation via NO-cGMP, and these changes are absent in cav-1 deficiency states. The data suggest a cooperative role of MR and cav-1 in regulating vascular contraction and NO-cGMP-mediated relaxation during low NO-high AngII-dependent cardiovascular injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / pharmacology*
  • Animals
  • Aorta / drug effects*
  • Aorta / metabolism
  • Aorta / pathology
  • Aorta / physiopathology
  • Blood Pressure / drug effects
  • Cardiovascular System / injuries*
  • Cardiovascular System / metabolism
  • Cardiovascular System / pathology
  • Cardiovascular System / physiopathology
  • Caveolin 1 / deficiency
  • Caveolin 1 / metabolism*
  • Cyclic GMP / metabolism
  • Eplerenone
  • Heart Injuries / chemically induced
  • Heart Injuries / metabolism
  • Heart Injuries / pathology
  • Heart Injuries / physiopathology
  • Male
  • Mice
  • Mineralocorticoid Receptor Antagonists / pharmacology
  • Models, Molecular
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / deficiency*
  • Nucleic Acid Conformation
  • Receptors, Mineralocorticoid / metabolism*
  • Renin-Angiotensin System / drug effects
  • Signal Transduction / drug effects
  • Spironolactone / analogs & derivatives
  • Spironolactone / pharmacology
  • Vasoconstriction / drug effects
  • Vasodilation / drug effects

Substances

  • Caveolin 1
  • Mineralocorticoid Receptor Antagonists
  • Receptors, Mineralocorticoid
  • Angiotensin II
  • Spironolactone
  • Nitric Oxide
  • Eplerenone
  • Cyclic GMP
  • NG-Nitroarginine Methyl Ester