Background: The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders.
Aims: Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ) induced diabetic rats.
Study design: Animal experimentation.
Methods: In this study, a total of 12 female Wistar Albino rats (control (n=6) and diabetic (n=6)) were used. Rats in the diabetic group, following the administration of a single dose of STZ, showed blood glucose levels higher than 200 mg/dL after 72 hours. When pregnancy was detected after the rats were bred, two pieces of placenta and the fetuses were collected on the 20(th) day of pregnancy by cesarean incision under ketamine/ xylazine anesthesia from in four rats from the control and diabetic groups. Placenta tissues were processed for light microscopy and transmission electron microscopy (TEM). Hematoxylin-eosin (HE) and periodic acid Schiff-diastase (PAS-D) staining for light microscopic and caspase-3 staining for immunohistochemical investigations were performed for each placenta. Electron microscopy was performed on thin sections contrasted with uranyl acetate and lead nitrate.
Results: Weight gain in the placenta and fetuses of diabetic rats and thinning of the decidual layer, thickening of the hemal membrane, apoptotic bodies, congestion in intervillous spaces, increased PAS-D staining in decidual cells and caspase-3 immunoreactivity were observed in the diabetic group. After the ultrastructural examination, the apoptotic appearance of the nuclei of trophoblastic cells, edema and intracytoplasmic vacuolization, glycogen accumulation, dilation of the endoplasmic reticulum and myelin figures were observed. In addition, capillary basement membrane thickening, capillary endothelial cells chromatin condensation in the nucleus and corrugation of the nucleus were found.
Conclusion: Diabetes causes histomorphometric, ultrastructural and apoptotic changes in rat placenta.
Keywords: Apoptosis; diabetes; histopathology; placenta; ultrastructure.