Communication is a central theme in biology. Consequently, specialized structures have evolved to permit rapid communication among cells, tissues, organs, and physiological systems, thus enhancing the overall function and adaptation of the organism. A prime example is the neuronal synapse. In the brain, synaptic communication establishes neuronal networks with the capacity to integrate, process, and store information, giving rise to complex output signals capable of orchestrating functions across the organism. At the intracellular level, discoveries now reveal the existence of 'mitochondrial synapses' establishing mitochondrial networks, with defined chromatin-modifying mitochondrial output signals capable of orchestrating gene expression across the genome. These discoveries raise the possibility that in addition to their role as powerhouses and neuromodulators, mitochondria behave as intracellular signal-processing networks.
Keywords: biological networks; epigenetics; inter-mitochondrial junctions (IMJs); mitochondria; mitochondrial synapse; synaptic function.
Copyright © 2015 Elsevier Ltd. All rights reserved.