Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer

J Control Release. 2015 Sep 28:214:76-84. doi: 10.1016/j.jconrel.2015.07.017. Epub 2015 Jul 17.

Abstract

Highly aggressive cancer types such as pancreatic cancer possess a mortality rate of up to 80% within the first 6months after diagnosis. To reduce this high mortality rate, more sensitive diagnostic tools allowing an early stage medical imaging of even very small tumours are needed. For this purpose, magnetic, biodegradable nanoparticles prepared using recombinant human serum albumin (rHSA) and incorporated iron oxide (maghemite, γ-Fe2O3) nanoparticles were developed. Galectin-1 has been chosen as target receptor as this protein is upregulated in pancreatic cancer and its precursor lesions but not in healthy pancreatic tissue nor in pancreatitis. Tissue plasminogen activator derived peptides (t-PA-ligands), that have a high affinity to galectin-1 have been chosen as target moieties and were covalently attached onto the nanoparticle surface. Improved targeting and imaging properties were shown in mice using single photon emission computed tomography-computer tomography (SPECT-CT), a handheld gamma camera, and magnetic resonance imaging (MRI).

Keywords: Handheld gamma camera; Maghemite; Magnetic resonance imaging (MRI); Single photon emission computed tomography–computer tomography (SPECT–CT); rHSA nanoparticles; t-PA-ligands to galectins; t-PApeptide1(LAC).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Ferric Compounds / chemistry
  • Galectin 1 / chemistry
  • Galectin 1 / metabolism
  • Humans
  • Magnetic Resonance Imaging
  • Magnetics*
  • Magnetite Nanoparticles*
  • Mice
  • Pancreatic Neoplasms / diagnosis*
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Radionuclide Imaging
  • Radiopharmaceuticals
  • Recombinant Proteins / chemistry
  • Serum Albumin / chemistry
  • Tissue Plasminogen Activator / metabolism
  • Tomography, Emission-Computed, Single-Photon
  • Xenograft Model Antitumor Assays

Substances

  • Ferric Compounds
  • Galectin 1
  • LGALS1 protein, human
  • Magnetite Nanoparticles
  • Radiopharmaceuticals
  • Recombinant Proteins
  • Serum Albumin
  • ferric oxide
  • Tissue Plasminogen Activator