Divalent Metal Ions Mg²⁺ and Ca²⁺ Have Distinct Effects on Protein Kinase A Activity and Regulation

ACS Chem Biol. 2015 Oct 16;10(10):2303-15. doi: 10.1021/acschembio.5b00271. Epub 2015 Aug 5.

Abstract

cAMP-dependent protein kinase (PKA) is regulated primarily in response to physiological signals while nucleotides and metals may provide fine-tuning. PKA can use different metal ions for phosphoryl transfer, yet some, like Ca(2+), do not support steady-state catalysis. Fluorescence Polarization (FP) and Surface Plasmon Resonance (SPR) were used to study inhibitor and substrate interactions with PKA. The data illustrate how metals can act differentially as a result of their inherent coordination properties. We found that Ca(2+), in contrast to Mg(2+), does not induce high-affinity binding of PKA to pseudosubstrate inhibitors. However, Ca(2+) works in a single turnover mode to allow for phosphoryl-transfer. Using a novel SPR approach, we were able to directly monitor the interaction of PKA with a substrate in the presence of Mg(2+)ATP. This allows us to depict the entire kinase reaction including complex formation as well as release of the phosphorylated substrate. In contrast to Mg(2+), Ca(2+) apparently slows down the enzymatic reaction. A focus on individual reaction steps revealed that Ca(2+) is not as efficient as Mg(2+) in stabilizing the enzyme:substrate complex. The opposite holds true for product dissociation where Mg(2+) easily releases the phospho-substrate while Ca(2+) traps both reaction products at the active site. This explains the low steady-state activity in the presence of Ca(2+). Furthermore, Ca(2+) is able to modulate kinase activity as well as inhibitor binding even in the presence of Mg(2+). We therefore hypothesize that the physiological metal ions Mg(2+) and Ca(2+) both play a role in kinase activity and regulation. Since PKA is localized close to calcium channels and may render PKA activity susceptible to Ca(2+), our data provide a possible mechanism for novel crosstalk between cAMP and calcium signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Calcium / chemistry
  • Calcium / pharmacology*
  • Cations, Divalent / chemistry
  • Cations, Divalent / pharmacology*
  • Cyclic AMP-Dependent Protein Kinases / chemistry
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Enzyme Activation / drug effects
  • Gene Expression Regulation, Enzymologic / drug effects*
  • Ions
  • Magnesium / chemistry
  • Magnesium / pharmacology*
  • Models, Biological
  • Molecular Sequence Data
  • Sequence Alignment

Substances

  • Cations, Divalent
  • Ions
  • Cyclic AMP-Dependent Protein Kinases
  • Magnesium
  • Calcium