5 f -shell correlation effects in dioxides of light actinides studied by O 1s x-ray absorption and emission spectroscopies and first-principles calculations

J Phys Condens Matter. 2015 Aug 12;27(31):315503. doi: 10.1088/0953-8984/27/31/315503. Epub 2015 Jul 23.

Abstract

Soft x-ray emission and absorption spectroscopic data are reported for the O 1s region of a single crystal of UO2, a polycrystalline NpO2 sample, and a single crystal of PuO2. The experimental data are interpreted using first-principles correlated-electron calculations within the framework of the density functional theory with added Coulomb U interaction (DFT+U). A detailed analysis regarding the origin of different structures in the x-ray emission and x-ray absorption spectra is given and the effect of varying the intra-atomic Coulomb interaction-U for the 5 f electrons is investigated. Our data indicate that O 1s x-ray absorption and emission spectroscopies can, in combination with DFT+U calculations, successfully be used to study 5 f -shell Coulomb correlation effects in dioxides of light actinides. The values for the Coulomb U parameter in these dioxides are derived to be in the range of 4-5 eV.