Kidney stones have been shown to exhibit a "twinkling artifact" (TA) under Color-Doppler ultrasound. Although this technique has better specificity than conventional Bmode imaging, it has lower sensitivity. To improve the overall performance of using TA as a diagnostic tool, Doppler output parameters were optimized in-vitro. The collected data supports a previous hypothesis that TA is caused by random oscillations of micron sized bubbles trapped in the cracks and crevices of kidney stones. A set of optimized parameters were implemented such that that the MI & TI remained within the FDA approved limits. Several clinical kidney scans were performed with the optimized settings and were able to detect stones with improved SNR relative to the default settings.
Keywords: Doppler; Ultrasound; cavitation; detection; kidney stone; optimization.