Schizophrenia (SZ) is a mental illness characterized by psychosis, negative symptoms, and cognitive deficits. The anterior cingulate cortex (ACC), a structurally and functionally diverse region, is one of several brain regions that is abnormal in SZ. The present study compared synaptic organization and mitochondrial number and morphology in postmortem ACC in SZ versus normal control (NC). Total synaptic density in the combined ACC was decreased in SZ, to 72% of normal controls (NCs), due to selective decreases in axospinous synapses, both asymmetric (excitatory) and symmetric (inhibitory). These changes were present in layers 3 and 5/6. The density of mitochondria in all axon terminals combined in SZ was decreased to 64% of NC. In layer 3, mitochondrial density was decreased only in terminals forming asymmetric synapses with spines, while in layers 5/6 mitochondrial density was decreased in terminals forming symmetric synapses with spines and dendrites. The proportion of terminals making symmetric synapses that contained mitochondria was significantly lower in SZ than in NCs, especially for symmetric axospinous synapses. The number of mitochondria per neuronal somata was decreased in the ACC in SZ compared to NCs; this finding was present in layers 5-6. The size of mitochondria in neuronal somata and throughout the neuropil was similar in SZ and NCs. Our results, though preliminary, are well supported by the literature, and support an anatomical substrate for some of the altered executive functions found in SZ.
Keywords: Dopamine; Electron microscopy; Glutamate; Neuropathology; Psychosis.
Copyright © 2015 Elsevier B.V. All rights reserved.