More accurate muscle models require appropriate modelling of individual twitches of motor units (MUs) and their unfused tetanic contractions. It was shown in our previous papers, using a few MUs, that modelling of unfused tetanic force curves by summation of equal twitches is not accurate, especially for slow MUs. The aim of this study was to evaluate this inaccuracy using a statistical number of MUs of the rat medial gastrocnemius muscle (15 of slow, 15 of fast resistant and 15 of fast fatigable type). Tetanic contractions were evoked by trains of 41 stimuli at random interpulse intervals and different mean frequencies, resembling discharge patterns observed during natural muscle activity. The tetanic curves were calculated by the summation of equal twitches according to the respective experimental patterns. The previously described 6-parameter analytical function for twitch modelling was used. Comparisons between the experimental and the modelled curves were made using two coefficients: the fit coefficient and the area coefficient. The errors between modelled and experimental tetanic forces were substantially different between the three MU types. The error was the most significant for slow MUs, which develop much higher forces in real contractions than could be predicted based on the summation of equal twitches, while the smallest error was observed for FF MUs--their recorded tetanic forces were similar to those predicted by modelling. The obtained results indicate the importance of the inclusion of the type-specific non-linearity in the summation of successive twitch-like contractions of MUs in order to increase the reliability of modelling skeletal muscle force.
Keywords: motor unit; muscle force; simulation; tetanic contraction.