Infection of cattle with chlamydiae is ubiquitous and, even in the absence of clinical sequeleae, has a quantifiable negative impact on livestock productivity. Despite recent progress, our knowledge about immune response mechanisms capable of counteracting the infection and preventing its detrimental effects is still limited. A well-established model of bovine acute respiratory Chlamydia (C.) psittaci infection was used here to characterize the kinetics of the local and systemic immune reactions in calves. In the course of two weeks following inoculation, leukocyte surface marker expression was monitored by flow cytometry in blood and bronchoalveolar lavage fluid (BALF). Immune-related protein and receptor transcription were determined by quantitative real-time reverse transcription PCR in blood, BALF and lung tissue. An early increase of IL2RA, IL10 and HSPA1A mRNA expressions was followed by a rise of lymphocytes, monocytes, and granulocytes exhibiting activated phenotypes in blood. Monocytes showed elevated expression rates of CD11b, CD14 and MHC class II. The rates of CD62L expression on CD8hi T cells in blood and on CD4+ T cells in BALF were also augmented and peaked between 2 and 4 dpi. Notably, CD25 antigen expression was significantly elevated, not only on CD8dim/CD62L+ and CD8-/CD62L+ cells in blood, but also on granulocytes in blood and BALF between 2-3 dpi. From 4 dpi onwards, changes declined and the calves recovered from the infection until 10 dpi. The findings highlight the effectiveness of rapid local and systemic immune reaction and indicate activated T cells, monocytes and granulocytes being essential for rapid eradication of the C. psittaci infection.