A multi-resolution textural approach to diagnostic neuropathology reporting

J Neurooncol. 2015 Sep;124(3):393-402. doi: 10.1007/s11060-015-1872-4. Epub 2015 Aug 9.

Abstract

We present a computer aided diagnostic workflow focusing on two diagnostic branch points in neuropathology (intraoperative consultation and p53 status in tumor biopsy specimens) by means of texture analysis via discrete wavelet frames decomposition. For intraoperative consultation, our methodology is capable of classifying glioblastoma versus metastatic cancer by extracting textural features from the non-nuclei region of cytologic preparations based on the imaging characteristics of glial processes, which appear as anisotropic thin linear structures. For metastasis, these are homogeneous in appearance, thus suitable and extractable texture features distinguish the two tissue types. Experiments on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7 % for glioblastoma, 87.5 % for metastasis and 88.7 % overall. For p53 interpretation, we detect and classify p53 status by classifying staining intensity into strong, moderate, weak and negative sub-classes. We achieved this by developing a novel adaptive thresholding for detection, a two-step rule based on weighted color and intensity for the classification of positively and negatively stained nuclei, followed by texture classification to classify the positively stained nuclei into the strong, moderate and weak intensity sub-classes. Our detection method is able to correctly locate and distinguish the four types of cells, at 85 % average precision and 88 % average sensitivity rate. These classification methods on the other hand recorded 81 % accuracy in classifying the positive and negative cells, and 60 % accuracy in further classifying the positive cells into the three intensity groups, which is comparable with neuropathologists' markings.

Keywords: Discrete wavelet frames; Glioblastoma; Intra-operative consultation; Metastasis; Prognostic reporting; Texture analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Algorithms
  • Brain / pathology*
  • Brain Neoplasms / diagnosis*
  • Brain Neoplasms / secondary
  • Female
  • Glioblastoma / diagnosis*
  • Glioblastoma / secondary
  • Humans
  • Image Interpretation, Computer-Assisted
  • Male
  • Middle Aged
  • Models, Theoretical
  • Neuroimaging
  • Neuropathology*
  • Pattern Recognition, Automated
  • Reproducibility of Results
  • Tumor Suppressor Protein p53 / metabolism
  • Wavelet Analysis

Substances

  • Tumor Suppressor Protein p53