Background: Early systemic inflammation in extremely-low-birth-weight (ELBW) infants is associated with an increased risk of bronchopulmonary dysplasia (BPD). Our objective was to identify circulating biomarkers and develop prediction models for BPD/death soon after birth.
Methods: Blood samples from postnatal day 1 were analyzed for C-reactive protein (CRP) by enzyme-linked immunosorbent assay and for 39 cytokines/chemokines by a multiplex assay in 152 ELBW infants. The primary outcome was physiologic BPD or death by 36 wk. CRP, cytokines, and clinical variables available at ≤24 h were used for forward stepwise regression and Classification and Regression Tree (CART) analysis to identify predictors of BPD/death.
Results: Overall, 24% developed BPD and 35% died or developed BPD. Regression analysis identified birth weight and eotaxin (CCL11) as the two most significant variables. CART identified FiO2 at 24 h (11% BPD/death if FiO2 ≤28%, 49% if >28%) and eotaxin in infants with FiO2 > 28% (29% BPD/death if eotaxin was ≤84 pg/ml; 65% if >84) as variables most associated with outcome.
Conclusion: Eotaxin measured on the day of birth is useful for identifying ELBW infants at risk of BPD/death. Further investigation is required to determine if eotaxin is involved in lung injury and pathogenesis of BPD.