Triple-negative breast cancer (TNBC), which is closely related to basal-like breast cancer, is a highly aggressive subtype of breast cancer that initially responds to chemotherapy but eventually develops resistance. This presents a major clinical challenge as there are currently no effective targeted therapies available due to its lack of HER2 and estrogen receptor expression. Here, we show that cyclin E and the enhancer of zeste 2 (EZH2) are closely co-expressed in TNBC patients, and cyclin E/CDK2 phosphorylates EZH2 at T416 (pT416-EZH2) in vivo. Phosphorylation of EZH2 at T416 enhances the ability of EZH2 to promote TNBC cell migration/invasion, tumorsphere formation, and in vivo tumor growth. In addition, high pT416-EZH2 correlates with poorer survival in TNBC patients. These findings suggest that pT416 has the potential to serve as a therapeutic biomarker for the aggressive forms of breast cancer and provide a rationale for the use of CDK2 inhibitors to treat TNBC.
Keywords: CDK2; EZH2; phosphorylation.