Doxorubicin (DXR) extravasation result with serious morbidity like skin ulceration and necrosis. The purpose of this study is to determine the protective effects of ozone, olive oil, dimethyl sulfoxide (DMSO), and coenzyme Q10 in the treatment of DXR-induced skin ulcers on rats. After an intradermal injection of DXR on a basis of an animal extravasation model, the materials were topically applied. The ulcer sizes were measured, and a punch biopsy was taken from the extravasation site in which the skin ulcers formed at the end of the experiment. The samples were analyzed for tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL1β), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) enzymes, and examined histopathologically. The ulcer sizes clearly decreased in the study groups, including DMSO, olive oil, ozone plus coenzyme Q10, and ozone plus olive oil groups in comparison with the control group with the exception of the coenzyme Q10 group. The malondialdehyde levels were lower in the DMSO, olive oil, ozone plus olive oil, and ozone plus coenzyme Q10 groups than they were in the control group, but they were not significantly different. The TNF-α level was lower in the DMSO, ozone plus olive oil, coenzyme Q10, and ozone plus coenzyme Q10 groups in comparison with the control group. There was no significant change in the SOD, GSH-Px, and IL1β levels in the study groups in comparison with the control and the sham groups. The ozone plus olive oil group could be considered to be an alternate therapy for skin ulcers due to DXR extravasation.
Keywords: antioxidant; coenzyme Q10; dimethyl sulfoxide; doxorubicin; extravasation; olive oil; ozone; skin ulcer.
© The Author(s) 2015.