Aims: The relationship between the heart rate of ventricular tachycardia (VT) and the transmurality of ischemic scars was assessed by a new semiautomatic coordinate-based analysis of late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) images.
Methods and results: Twenty patients assessed by LGE-CMR before implantation of implantable cardioverter defibrillator (ICD) with verified VT during the first year following ICD implantation were included. Scar was defined by pixels with a signal intensity ≥ 50% of maximum signal intensity. All pixels were assigned a coordinate position between endo- and epicardium (λ) and the angle of the heart axis (φ). Based upon the λ and φ values, multiple scar features were computed for all scarred areas. These features were correlated to VT heart rate across the complete range of transmurality. The strongest correlation with univariate regression was found between VT heart rate and the sum of transmurality when the maximum transmurality of these features was ≥ 90% (R-square = 0.47). In multiple regressions analysis, the strongest relationship with VT heart rate was found with a maximum transmurality ≥ 90% and by a combination of scar size, transmurality, and endocardial extent of infarction (R-square = 0.64).
Conclusion: Transmurality is the strongest predictor of VT heart rate both in univariate and multivariate models. The strongest relationships were found at a transmurality level > 90%.
Keywords: ischemic scar; late enhanced cardiac magnetic resonance; transmurality; ventricular tachycardia.