This study investigated the haemodynamic effects of adaptive servoventilation (ASV) in heart failure (HF) patients with Cheyne-Stokes respiration (CSR) versus healthy controls. Twenty-seven HF patients with CSR and 15 volunteers were ventilated for 1 h using a new ASV device (PaceWave™). Haemodynamics were continuously and non-invasively recorded at baseline, during ASV and after ventilation. Prior to the actual study, a small validation study was performed to validate non-invasive measurement of Stroke volume index (SVI). Non-invasive measurement of SVI showed a marginal overall difference of -0.03 ± 0.41 L/min/m(2) compared to the current gold standard (Thermodilution-based measurement). Stroke volume index (SVI) increased during ASV in HF patients (29.7 ± 5 to 30.4 ± 6 to 28.7 ± 5 mL/m(2), p < 0.05) and decreased slightly in volunteers (50.7 ± 12 to 48.6 ± 11 to 47.9 ± 12 mL/m(2)). Simultaneously, 1 h of ASV was associated with a trend towards an increase in parasympathetic nervous activity (PNA) in HF patients and a trend towards an increase in sympathetic nervous activity (SNA) in healthy volunteers. Blood pressure (BP) and total peripheral resistance response increased significantly in both groups, despite marked inter-individual variation. Effects were independent of vigilance. Predictors of increased SVI during ASV in HF patients included preserved right ventricular function, normal resting BP, non-ischaemic HF aetiology, mitral regurgitation and increased left ventricular filling pressures. This study confirms favourable haemodynamic effects of ASV in HF patients with CSR presenting with mitral regurgitation and/or increased left ventricular filling pressures, but also identified a number of new predictors. This might be mediated by a shift towards more parasympathetic nervous activity in those patients.
Keywords: Adaptive servoventilation; Blood pressure; Cheyne–Stokes respiration; Heart failure; Sleep-disordered breathing.