Purpose: The present study aimed to establish a baseline for detailed 3D brachial plexus reconstruction from magnetic resonance imaging (MRI). Concretely, the goal was to determine the individual brachial plexus anatomy with maximum detail and accuracy achievable, as yet irrespective of whether the methods used could be economically and practically applied in the clinical setting.
Materials and methods: Six embalmed cadavers were randomly taken for MRI imaging of the brachial plexus. Detailed two-dimensional (2D) segmentation for all brachial plexus parts was done. The 2D brachial plexus segmentations were 3D reconstructed using Mimics(®) software. Then, these 3D reconstructions were anatomically validated by dissection of the cadavers. After finalising the cadaver experiments, brachial plexus MRIs were obtained in three healthy male volunteers and the same reconstruction procedure as in vitro was followed.
Results: A procedure was developed for brachial plexus 3D reconstruction based on MRI without the use of any contrast agent. Anatomical validation of six cadaver brachial plexus reconstructions showed high correspondence with the dissected brachial plexuses. Anatomical variations of the main branches were equally present in the 3D reconstructions generated. However, there were also some differences that related to the difference between the surface anatomy of the nerve and the internal nerve structure. In vivo, it was possible to reconstruct the complete brachial plexus in such a manner that normal-appearing BPs were derived in a reproducible way.
Conclusions: This study showed that the described procedure results in accurate and reproducible brachial plexus 3D reconstructions.
Keywords: Anatomical validation; Brachial plexus; Cadaver; Procedure; Segmentation; Three-dimensional reconstruction.