Simultaneous targeting of dopamine D2 and 5-HT2A receptors for the treatment of schizophrenia is one key feature of typical and atypical antipsychotics. In most of the top-selling antipsychotic drugs like aripiprazole and risperidone, high affinity to both receptors can be attributed to the presence of 1,4-disubstituted aromatic piperazines or piperidines as primary receptor recognition elements. Taking advantage of our in-house library of phenylpiperazine-derived dopamine receptor ligands and experimental data, we established highly significant CoMFA and CoMSIA models for the prediction of 5-HT2A over D2 selectivity. Subsequently, the models were applied to identify the selective candidates 55-57 from our newly synthesized library of GPCR ligands comprising a pyrazolo[1,5-a]pyridine head group and a 1,2,3-triazole based linker unit. The test compound 57 showed subnanomolar a Ki value (0.64 nM) for 5-HT2A and more than 10- and 30-fold selectivity over the dopamine receptor isoforms D2S and D2L, respectively.
Keywords: 1,4-DAP; 3D-QSAR; 5-HT(2A)/D(2) selectivity; CoMFA; CoMSIA; D(2) partial agonist; Dopamine receptor; GPCR; Phenylpiperazine; Serotonin receptor; Subtype selectivity.
Copyright © 2015 Elsevier Ltd. All rights reserved.