The respiratory chain bc1 complex is central to mitochondrial bioenergetics and the target of antiprotozoals. We characterized a modified yeast bc1 complex that more closely resemble Plasmodium falciparum enzyme. The mutant version was generated by replacing ten cytochrome b Qo site residues by P. falciparum equivalents. The Plasmodium-like changes caused a major dysfunction of the catalytic mechanism of the bc1 complex resulting in superoxide overproduction and respiratory growth defect. The defect was corrected by substitution of the conserved residue Y279 by a phenylalanine, or by mutations in or in the vicinity of the hinge domain of the iron-sulphur protein. It thus appears that side-reactions can be prevented by the substitution Y279F or the modification of the iron-sulphur protein hinge region. Interestingly, P. falciparum - and all the apicomplexan - contains an unusual hinge region. We replaced the yeast hinge region by the Plasmodium version and combined it with the Plasmodium-like version of the Qo site. This combination restored the respiratory growth competence. It could be suggested that, in the apicomplexan, the hinge region and the cytochrome b Qo site have co-evolved to maintain catalytic efficiency of the bc1 complex Qo site.
Keywords: Malaria parasite; Respiratory complex III; Superoxide production; Yeast model.
Copyright © 2015 Elsevier B.V. All rights reserved.