Recently, anisotropic 2D materials, such as black phosphorus and rhenium disulfides (ReS2 ), have attracted a lot attention because of their unique applications on electronics and optoelectronics. In this work, the direct growth of high-quality ReS2 atomic layers and nanoribbons has been demonstrated by using chemical vapor deposition (CVD) method. A possible growth mechanism is proposed according to the controlled experiments. The CVD ReS2-based filed-effect transistors (FETs) show n-type semiconducting behavior with a current on/off ratio of ≈10(6) and a charge carrier mobility of ≈9.3 cm(2) Vs(-1). These results suggested that the quality of CVD grown ReS2 is comparable to mechanically exfoliated ReS2, which is also further supported by atomic force microscopy imaging, high-resolution transmission electron microscopy imaging and thickness-dependent Raman spectra. The study here indicates that CVD grown ReS2 may pave the way for the large-scale fabrication of ReS2-based high-performance optoelectronic devices, such as anisotropic FETs and polarization detection.
Keywords: 2D materials; anisotropy; chemical vapor deposition; field effect transistors; rhenium disulphide.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.