Effects of Iron Chelators on Pulmonary Iron Overload and Oxidative Stress in β-Thalassemic Mice

Pharmacology. 2015;96(3-4):192-9. doi: 10.1159/000438994. Epub 2015 Aug 29.

Abstract

Aim: To evaluate the effect of iron chelators on iron-related pulmonary pathology and oxidative stress in an animal model of β-thalassemia.

Methods: Pulmonary iron overload was induced in heterozygous β-globin knockout mice (muβth-3/+, BKO). Over a period of 2 weeks, 180 mg of iron/mouse was loaded by intraperitoneal injection of iron dextran, and subsequently treated daily via intraperitoneal with either deferoxamine (DF) or deferiprone (L1) at an equimolar concentration of iron binding (0.2 and 0.6 μmol/g body weight, respectively) for 7 days.

Results: Iron loading resulted in iron deposition in peribronchial regions, septa and also in alveolar macrophages with a grading score of 3. This iron burden resulted in lung epithelial injuries, fibrosis and corresponded with increased lipid peroxidation and decreased tissue catalase activity. Treatment with DF or L1 resulted in a reduction of iron-laden alveolar macrophages and decreased oxidative stress and tissue damage, showing the iron mobilizing ability of both compounds.

Conclusion: Iron chelation therapy, with DF and L1, may protect against pulmonary damage by sequestering catalytic iron and improving oxidative status. It may be beneficial in the prevention of pulmonary complications in thalassemia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antidotes / therapeutic use
  • Deferiprone
  • Deferoxamine / therapeutic use
  • Dextrans / therapeutic use
  • Female
  • Fibrosis / pathology
  • Iron Chelating Agents / therapeutic use*
  • Iron Overload / drug therapy*
  • Iron Overload / etiology*
  • Iron Overload / pathology
  • Lung / metabolism
  • Lung / pathology
  • Macrophages, Alveolar / drug effects
  • Macrophages, Alveolar / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Oxidative Stress / drug effects*
  • Pyridones / pharmacology
  • Respiratory Mucosa / pathology
  • beta-Globins / genetics
  • beta-Thalassemia / complications*
  • beta-Thalassemia / drug therapy*
  • beta-Thalassemia / pathology

Substances

  • Antidotes
  • Dextrans
  • Iron Chelating Agents
  • Pyridones
  • beta-Globins
  • Deferiprone
  • Deferoxamine