2-Cys Prxs are H2O2-specific antioxidants that become inactivated by enzyme hyperoxidation at elevated H2O2 levels. Although hyperoxidation restricts the antioxidant physiological role of these enzymes, it also allows the enzyme to become an efficient chaperone holdase. The critical molecular event allowing the peroxidase to chaperone switch is thought to be the enzyme assembly into high molecular weight (HMW) structures brought about by enzyme hyperoxidation. How hyperoxidation promotes HMW assembly is not well understood and Prx mutants allowing disentangling its peroxidase and chaperone functions are lacking. To begin addressing the link between enzyme hyperoxidation and HMW structures formation, we have evaluated the in vivo 2-Cys Prxs quaternary structure changes induced by H2O2 by size exclusion chromatography (SEC) on crude lysates, using wild type (Wt) untagged and Myc-tagged S. cerevisiae 2-Cys Prx Tsa1 and derivative Tsa1 mutants or genetic conditions known to inactivate peroxidase or chaperone activity or altering the enzyme sensitivity to hyperoxidation. Our data confirm the strict causative link between H2O2-induced hyperoxidation and HMW formation/stabilization, also raising the question of whether CP hyperoxidation triggers the assembly of HMW structures by the stacking of decamers, which is the prevalent view of the literature, or rather, the stabilization of preassembled stacked decamers.
Keywords: Chaperone; H(2)O(2); Peroxidase; Peroxiredoxin; S. cerevisiae; Sulfiredoxin.
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.