Human papillomavirus type 16 (HPV16) is a major cause of cervical cancer. We previously demonstrated that C-to-T and G-to-A hypermutations accumulated in the HPV16 genome by APOBEC3 expression in vitro. To investigate in vivo characteristics of hypermutation, differential DNA denaturation-PCR (3D-PCR) was performed using three clinical specimens obtained from HPV16-positive cervical dysplasia, and detected hypermutation from two out of three specimens. One sample accumulating hypermutations in both E2 and the long control region (LCR) was further subjected to Next-Generation Sequencing, revealing that hypermutations spread across the LCR and all early genes. Notably, hypermutation was more frequently observed in the LCR, which contains a viral replication origin and the early promoter. APOBEC3 expressed abundantly in an HPV16-positive cervix, suggesting that single-stranded DNA exposed during viral replication and transcription may be efficient targets for deamination. The results further strengthen a role of APOBEC3 in introducing HPV16 hypermutation in vivo.
Keywords: APOBEC3; Cervical cancer; HPV16; Hypermutation; Next-Generation Sequencing.
Copyright © 2015 Elsevier Inc. All rights reserved.