A systematic analysis reveals heterogeneous changes in the endocytic activities of cancer cells

Cancer Res. 2015 Nov 1;75(21):4640-50. doi: 10.1158/0008-5472.CAN-15-0939. Epub 2015 Sep 10.

Abstract

Metastasis is a multistep process requiring cancer cell signaling, invasion, migration, survival, and proliferation. These processes require dynamic modulation of cell surface proteins by endocytosis. Given this functional connection, it has been suggested that endocytosis is dysregulated in cancer. To test this, we developed In-Cell ELISA assays to measure three different endocytic pathways: clathrin-mediated endocytosis, caveolae-mediated endocytosis, and clathrin-independent endocytosis and compared these activities using two different syngeneic models for normal and oncogene-transformed human lung epithelial cells. We found that all endocytic activities were reduced in the transformed versus normal counterparts. However, when we screened 29 independently isolated non-small cell lung cancer (NSCLC) cell lines to determine whether these changes were systematic, we observed significant heterogeneity. Nonetheless, using hierarchical clustering based on their combined endocytic properties, we identified two phenotypically distinct clusters of NSCLCs. One co-clustered with mutations in KRAS, a mesenchymal phenotype, increased invasion through collagen and decreased growth in soft agar, whereas the second was enriched in cells with an epithelial phenotype. Interestingly, the two clusters also differed significantly in clathrin-independent internalization and surface expression of CD44 and CD59. Taken together, our results suggest that endocytotic alterations in cancer cells that affect cell surface expression of critical molecules have a significant influence on cancer-relevant phenotypes, with potential implications for interventions to control cancer by modulating endocytic dynamics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD59 Antigens / biosynthesis
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Caveolae / metabolism
  • Cell Adhesion
  • Cell Line, Tumor
  • Cell Membrane / metabolism
  • Cell Movement
  • Cell Proliferation
  • Clathrin / metabolism
  • Collagen / genetics
  • Endocytosis*
  • Humans
  • Hyaluronan Receptors / biosynthesis
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Neoplasm Invasiveness
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Respiratory Mucosa / metabolism
  • Respiratory Mucosa / pathology

Substances

  • CD44 protein, human
  • CD59 Antigens
  • Clathrin
  • Hyaluronan Receptors
  • KRAS protein, human
  • CD59 protein, human
  • Collagen
  • Proto-Oncogene Proteins p21(ras)