A dynamic interface between ubiquitylation and cAMP signaling

Front Pharmacol. 2015 Sep 4:6:177. doi: 10.3389/fphar.2015.00177. eCollection 2015.

Abstract

Phosphorylation waves drive the propagation of signals generated in response to hormones and growth factors in target cells. cAMP is an ancient second messenger implicated in key biological functions. In mammals, most of the effects elicited by cAMP are mediated by protein kinase A (PKA). Activation of the kinase by cAMP results in the phosphorylation of a variety of cellular substrates, leading to differentiation, proliferation, survival, metabolism. The identification of scaffold proteins, namely A-Kinase Anchor proteins (AKAPs), that localize PKA in specific cellular districts, provided critical cues for our understanding of the role played by cAMP in cell biology. Multivalent complexes are assembled by AKAPs and include signaling enzymes, mRNAs, adapter molecules, receptors and ion channels. A novel development derived from the molecular analysis of these complexes nucleated by AKAPs is represented by the presence of components of the ubiquitin-proteasome system (UPS). More to it, the AKAP complex can be regulated by the UPS, eliciting relevant effects on downstream cAMP signals. This represents a novel, yet previously unpredicted interface between compartmentalized signaling and the UPS. We anticipate that impairment of these regulatory mechanisms could promote cell dysfunction and disease. Here, we will focus on the reciprocal regulation between cAMP signaling and UPS, and its relevance to human degenerative and proliferative disorders.

Keywords: AKAP; PKA signaling; cyclic AMP; proteasome; ubiquitination.

Publication types

  • Review