This case study describes the effects of a wearable dynamic knee orthosis to supplement walking training in a patient suffering knee hyperextension. The subject was a 57-year old female who was 3.5 years post-brain tumor surgery. She was presented with impaired right lower extremity muscle performance, increased lower extremity muscle tension, and right knee hyperextension. She reported pain at the right knee joint and tibialis anterior after 10 minutes of over-ground walk. Fifteen one-hour sessions of gait training with robotic knee orthosis (RKO) were provided an over 3 weeks period. The subject demonstrated improvement with right lower limb kinematic and kinetic measures of gait. Peak flexion degree and moment increased (from -4.99° to 13.47°, and from 0.18 Nm/kg to 0.20 Nm/kg respectively).Extension peak moment decreased from 1.03 Nm/kg to 0.53 Nm/kg. Knee joint force decreased from 0.68 N to 0.45 N. Ground reaction force (GRF) reduced from 11.06N to 10.11N. Berg Balance Scale (BBS) improved from 45/56 to 51/56. No difference was observed in Fugl-Meyer Assessment of the Lower limb (FMA-LE) scores. Gait training that integrates an intention-based RKO for correcting knee hyperextension can be clinically effective. The persistence and generalizability of these results need to be further investigated.
Keywords: Rehabilitation robot; gait analysis; knee hyperextension; robotic knee orthosis.