Background: Drug resistance poses a serious challenge for the control of tuberculosis in many settings. It is well established that the expected future trend in resistance depends on the reproductive fitness of drug-resistant Mycobacterium tuberculosis. However, the variability in fitness between strains with different resistance-conferring mutations has been largely ignored when making these predictions.
Methods: We developed a novel approach for incorporating the variable fitness costs of drug resistance-conferring mutations and for tracking this distribution of fitness costs over time within a transmission model. We used this approach to describe the effects of realistic fitness cost distributions on the future prevalence of drug-resistant tuberculosis.
Results: The shape of the distribution of fitness costs was a strong predictor of the long-term prevalence of resistance. While, as expected, lower average fitness costs of drug resistance-conferring mutations were associated with more severe epidemics of drug-resistant tuberculosis, fitness distributions with greater variance also led to higher levels of drug resistance. For example, compared to simulations in which the fitness cost of resistance was fixed, introducing a realistic amount of variance resulted in a 40% increase in prevalence of drug-resistant tuberculosis after 20 years.
Conclusions: The differences in the fitness costs associated with drug resistance-conferring mutations are a key determinant of the future burden of drug-resistant tuberculosis. Future studies that can better establish the range of fitness costs associated with drug resistance-conferring mutations will improve projections and thus facilitate better public health planning efforts.
Keywords: antibiotic resistance; fitness costs; mathematical modeling; tuberculosis.
© The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: [email protected].