The statistical methods for variable selection and prediction could be challenging when missing covariates exist. Although multiple imputation (MI) is a universally accepted technique for solving missing data problem, how to combine the MI results for variable selection is not quite clear, because different imputations may result in different selections. The widely applied variable selection methods include the sparse partial least-squares (SPLS) method and the penalized least-squares method, e.g. the elastic net (ENet) method. In this paper, we propose an MI-based weighted elastic net (MI-WENet) method that is based on stacked MI data and a weighting scheme for each observation in the stacked data set. In the MI-WENet method, MI accounts for sampling and imputation uncertainty for missing values, and the weight accounts for the observed information. Extensive numerical simulations are carried out to compare the proposed MI-WENet method with the other competing alternatives, such as the SPLS and ENet. In addition, we applied the MIWENet method to examine the predictor variables for the endothelial function that can be characterized by median effective dose (ED50) and maximum effect (Emax) in an ex-vivo phenylephrine-induced extension and acetylcholine-induced relaxation experiment.
Keywords: elastic net; multiple imputation; penalized least squares; variable selection.