Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

Glob Chang Biol. 2016 Feb;22(2):957-64. doi: 10.1111/gcb.13098. Epub 2015 Oct 23.

Abstract

Although elevated CO2 (eCO2 ) significantly affects the α-diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the β-diversity of 110 soil microbial communities across six free air CO2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The β-diversity of soil microbial communities was significantly (P < 0.05) correlated with geographic distance under both CO2 conditions, but declined significantly (P < 0.05) faster at eCO2 with a slope of -0.0250 than at ambient CO2 (aCO2 ) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P < 0.05) contributed to the observed microbial β-diversity. This study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO2 continues to increase.

Keywords: elevated carbon dioxide; free air CO2 enrichment; microbial community; spatial turnover rate; β-diversity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / drug effects
  • Bacteria / genetics
  • Carbon Dioxide / pharmacology*
  • DNA, Bacterial / analysis
  • Soil Microbiology*

Substances

  • DNA, Bacterial
  • Carbon Dioxide