Purpose: Knowledge of the specific anatomical information of a patient is important when planning and undertaking laparoscopic surgery due to the restricted field of view and lack of tactile feedback compared to open surgery. To assist this type of surgery, we have developed a surgical navigation system that presents the patient's anatomical information synchronized with the laparoscope position. This paper presents the surgical navigation system and its clinical application to laparoscopic gastrectomy for gastric cancer.
Methods: The proposed surgical navigation system generates virtual laparoscopic views corresponding to the laparoscope position recorded with a three-dimensional (3D) positional tracker. The virtual laparoscopic views are generated from preoperative CT images. A point-based registration aligns coordinate systems between the patient's anatomy and image coordinates. The proposed navigation system is able to display the virtual laparoscopic views using the registration result during surgery.
Results: We performed surgical navigation during laparoscopic gastrectomy in 23 cases. The navigation system was able to present the virtual laparoscopic views in synchronization with the laparoscopic position. The fiducial registration error was calculated in all 23 cases, and the average was 14.0 mm (range 6.1-29.8).
Conclusion: The proposed surgical navigation system can provide CT-derived patient anatomy aligned to the laparoscopic view in real time during surgery. This system enables accurate identification of vascular anatomy as a guide to vessel clamping prior to total or partial gastrectomy.
Keywords: Gastric cancer; Laparoscopic gastrectomy; Laparoscopy; Stomach; Surgical navigation; Virtual laparoscopy.