Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling

Nano Lett. 2015 Nov 11;15(11):7539-43. doi: 10.1021/acs.nanolett.5b03271. Epub 2015 Oct 9.

Abstract

Solution-processed quantum dots are a promising material for large-scale, low-cost solar cell applications. New device architectures and improved passivation have been instrumental in increasing the performance of quantum dot photovoltaic devices. Here we report photovoltaic devices based on inks of quantum dot on which we grow thin perovskite shells in solid-state films. Passivation using the perovskite was achieved using a facile solution ligand exchange followed by postannealing. The resulting hybrid nanostructure created a more intrinsic CQD film, which, when incorporated into a photovoltaic device with graded bandstructure, achieved a record solar cell performance for single-step-deposited CQD films, exhibiting an AM1.5 solar power conversion efficiency of 8.95%.

Keywords: Colloidal quantum dots; ligand exchange; perovskites; solar cells; surface passivation.