Nanoparticles are increasingly popular choices for labeling and tracking cells in biomedical applications such as cell therapy. However, all current types of nanoparticles fail to provide real-time, noninvasive monitoring of cell status and functions while often generating false positive signals. Herein, a nanosensor platform to track the real-time expression of specific biomarkers that correlate with cell status and functions is reported. Nanosensors are synthesized by encapsulating various sensor molecules within biodegradable polymeric nanoparticles. Upon intracellular entry, nanosensors reside within the cell cytoplasm, serving as a depot to continuously release sensor molecules for up to 30 days. In the absence of the target biomarkers, the released sensor molecules remain 'Off'. When the biomarker(s) is expressed, a detectable signal is generated (On). As a proof-of-concept, three nanosensor formulations were synthesized to monitor cell viability, secretion of nitric oxide, and β-actin mRNA expression.