Sex differences in immatures predict behavioural differences in adulthood in many mammal species. Because most studies have focused on sex differences in social interactions, little is known about possible sex differences in 'preparation' for adult life with regards to tool use skills. We investigated sex and age differences in object manipulation in immature apes. Chimpanzees use a variety of tools across numerous contexts, whereas bonobos use few tools and none in foraging. In both species, a female bias in adult tool use has been reported. We studied object manipulation in immature chimpanzees at Kalinzu (Uganda) and bonobos at Wamba (Democratic Republic of Congo). We tested predictions of the 'preparation for tool use' hypothesis. We confirmed that chimpanzees showed higher rates and more diverse types of object manipulation than bonobos. Against expectation, male chimpanzees showed higher object manipulation rates than females, whereas in bonobos no sex difference was found. However, object manipulation by male chimpanzees was play-dominated, whereas manipulation types of female chimpanzees were more diverse (e.g., bite, break, carry). Manipulation by young immatures of both species was similarly dominated by play, but only in chimpanzees did it become more diverse with age. Moreover, in chimpanzees, object types became more tool-like (i.e., sticks) with age, further suggesting preparation for tool use in adulthood. The male bias in object manipulation in immature chimpanzees, along with the late onset of tool-like object manipulation, indicates that not all (early) object manipulation (i.e., object play) in immatures prepares for subsistence tool use. Instead, given the similarity with gender differences in human children, object play may also function in motor skill practice for male-specific behaviours (e.g., dominance displays). In conclusion, even though immature behaviours almost certainly reflect preparation for adult roles, more detailed future work is needed to disentangle possible functions of object manipulation during development.