The citrophilus mealybug, Pseudococcus calceolariae (Maskell), is an important pest of fruit crops in many regions of the world. Recently, its sex pheromone has been identified and synthesized. We carried out field experiments with the goal of developing monitoring protocols for P. calceolariae using pheromone-baited traps. Traps checked hourly for 24 hours showed a distinct diel pattern of male flight, between 18:00 and 21:00 h. The presence of unnatural stereoisomers did not affect trap captures, with isomeric mixtures capturing similar amounts of males as the biological active isomer. Dose of isomeric mixture pheromone (0-100 µg) had a nonlinear effect on male captures, with 10, 30, and 50 µg capturing similar amounts. The effective range of pheromone traps was determined by placing traps at different distances (15, 40, and 80 m) from an infested blueberry field, loaded with 0, 1 and 25 µg of the pheromone. For all distances, 25 µg dose captured more males, and was highly attractive up to 40 m. There was a significant effect of lure age on male captures (0-150 d), with similar amount of males captured up to 90-day-old lure, and lower captures in the 150-day-old lure compared with fresh ones. We found significant positive correlations between P. calceolariae males caught in pheromone traps with female abundance and fruit infestation at harvest. Our results show the usefulness of P. calceolariae pheromones for monitoring at field level and provide information for the design of monitoring protocols.
Keywords: Pseudococcus calceolariae; mealybug; monitoring; pheromone trap.
© The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: [email protected].