In this study, pulsed electric fields (PEF) treatments and their effects on the structure of vitamin C (VIT-C) were estimated by fluorescence and Fourier transform infrared (FT-IR) spectroscopy, the relative content of VIT-C was measured by HPLC and the antioxidant properties of treated VIT-C by DPPH radical scavenging as well as reducing power tests. The fluorescence intensity of treated VIT-C increased slightly compared to the untreated VIT-C. Moreover, the effect of PEF on the structure of VIT-C was observed using the FT-IR spectra. These phenomena indicated that the PEF affected the conformation of VIT-C, which promoted the VIT-C isomer transformed enol-form into keto-form. In addition, the PEF treatments did not suffer the damage to VIT-C and could slow down the oxidation process in involving of experimental conditions by HPLC. The antioxidant properties of the treated VIT-C were enhanced, which was proved by radical scavenging and also the reducing power tests.
Keywords: FTIR; HPLC; PEF; antioxidant properties; fluorescence; vitamin C.