Most diagnostic accuracy measures and criteria for selecting optimal cut-points are only applicable to diseases with binary or three stages. Currently, there exist two diagnostic measures for diseases with general k stages: the hypervolume under the manifold and the generalized Youden index. While hypervolume under the manifold cannot be used for cut-points selection, generalized Youden index is only defined upon correct classification rates. This paper proposes a new measure named maximum absolute determinant for diseases with k stages ([Formula: see text]). This comprehensive new measure utilizes all the available classification information and serves as a cut-points selection criterion as well. Both the geometric and probabilistic interpretations for the new measure are examined. Power and simulation studies are carried out to investigate its performance as a measure of diagnostic accuracy as well as cut-points selection criterion. A real data set from Alzheimer's Disease Neuroimaging Initiative is analyzed using the proposed maximum absolute determinant.
Keywords: Alzheimer’s Disease; Maximum absolute determinant; optimal cut-points; volume for the parallelotope.