Objective: Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that promote tissue homeostasis and protect against pathogens. ILCs produce cytokines also produced by T lymphocytes that have been shown to affect atherosclerosis, but the influence of ILCs on atherosclerosis has not been explored.
Approach and results: We demonstrate that CD25(+) ILCs that produce type 2 cytokines (ILC2s) are present in the aorta of atherosclerotic immunodeficient ldlr(-/-)rag1(-/-) mice. To investigate the role of ILCs in atherosclerosis, ldlr(-/-)rag1(-/-) mice were concurrently fed an atherogenic diet and treated with either ILC-depleting anti-CD90.2 antibodies or IL-2/anti-IL-2 complexes that expand CD25(+) ILCs. Lesion development was not affected by anti-CD90.2 treatment, but was reduced in IL-2/anti-IL-2-treated mice. These IL-2-treated mice had reduced very low-density lipoprotein cholesterol and increased triglycerides compared with controls and reduced apolipoprotein B100 gene expression in the liver. IL-2/anti-IL-2 treatment caused expansion of ILC2s in aorta and other tissues, elevated levels of IL-5, systemic eosinophila, and hepatic eosinophilic inflammation. Blockade of IL-5 reversed the IL-2 complex-induced eosinophilia but did not change lesion size.
Conclusions: This study demonstrates that expansion of CD25-expressing ILCs by IL-2/anti-IL-2 complexes leads to a reduction in very low-density lipoprotein cholesterol and atherosclerosis. Global depletion of ILCs by anti-CD90.2 did not significantly affect lesion size indicating that different ILC subsets may have divergent effects on atherosclerosis.
Keywords: atherosclerosis; cytokines; eosinophils; interleukin; triglycerides.
© 2015 American Heart Association, Inc.