In a number of recent studies we used computer modeling to investigate the evolution of muscle leverage (moment arms) and function in extant and extinct archosaur lineages (crocodilians, dinosaurs including birds and pterosaurs). These studies sought to quantify the level of disparity and convergence in muscle moment arms during the evolution of bipedal and quadrupedal posture in various independent archosaur lineages, and in doing so further our understanding of changes in anatomy, locomotion and ecology during the group's >250 million year evolutionary history. Subsequent work by others has led us to re-evaluate our models, which revealed a methodological error that impacted on the results obtained from the abduction-adduction and long-axis rotation moment arms in our published studies. In this paper we present corrected abduction-adduction and long axis rotation moment arms for all our models, and evaluate the impact of this new data on the conclusions of our previous studies. We find that, in general, our newly corrected data differed only slightly from that previously published, with very few qualitative changes in muscle moments (e.g., muscles originally identified as abductors remained abductors). As a result the majority of our previous conclusions regarding the functional evolution of key muscles in these archosaur groups are upheld.
Keywords: Archosaurs; Bipedalism; Computational modeling; Locomotion; Moment arms; Quadrupedalism.