Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that affect a broad range of physiological processes, including cell proliferation, inflammation, inflammation resolution, and vascular function. Moreover, oxylipins are readily detectable in plasma, and certain subsets of oxylipins have been detected in human atherosclerotic lesions. Taken together, we set out to produce a detailed quantitative assessment of plasma and plaque oxylipins in a widely used model of atherosclerosis, to identify potential biomarkers of disease progression. We administered regular chow or regular chow supplemented with 0.5% cholesterol (HC) to male New Zealand white rabbits for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our targeted lipidomic analyses of oxylipins on plaques isolated from rabbits fed the HC diet detected 34 oxylipins, 28 of which were in compliance with our previously established quality control acceptance criteria. The arachidonic acid (AA) metabolite derived from the COX pathway, 6-keto-PGF1α was the most abundant plaque oxylipin, followed by the linoleic acid (LA) metabolites 9-HODE, 13-HODE and 9,12,13-TriHOME and the arachidonic acid (AA)-derivatives 11-HETE and 12-HETE. We additionally found that the most abundant oxylipins in plasma were three of the five most abundant oxylipins in plaque, namely 11-HETE, 13-HODE, and 9-HODE. The studies reported here make the first step towards a comprehensive characterization of oxylipins as potentially translatable biomarkers of atherosclerosis.
Keywords: Atherosclerosis; Cholesterol; Eicosanoids; Lipids; Mass spectrometry; Plaque.