We tested whether the T helper (Th) type 2 (Th2) cell agonist and allergenic ligand IL-33 was associated with eosinophilic esophagitis (EoE) development in a pediatric cohort and whether IL-33 protein could induce disease symptoms in mice. Biopsies from EoE patients or controls were used to measure IL-33 mRNA and protein expression. Increased expression of IL-33 mRNA was found in the esophageal mucosa in EoE. IL-33 protein was detected in cells negative for CD45, mast cells, and epithelial cell markers near blood vessels. Circulating levels of IL-33 were not increased. The time course for IL-33 gene expression was quantified in an established Aspergillus fumigatus allergen mouse model of EoE. Because IL-33 induction was transient in this model and chronicity of IL-33 expression has been demonstrated in humans, naive mice were treated with recombinant IL-33 for 1 wk and esophageal pathology was evaluated. IL-33 application produced changes consistent with phenotypically early EoE, including transmural eosinophilia, mucosal hyperproliferation, and upregulation of eosinophilic genes and chemokines. Th2 cytokines, including IL-13, along with innate lymphoid cell group 2, Th1/17, and M2 macrophage marker genes, were increased after IL-33 application. IL-33-induced eosinophilia was ablated in IL-13 null mice. In addition, IL-33 induced a profound inhibition of the regulatory T cell gene signature. We conclude that IL-33 gene expression is associated with pediatric EoE development and that application of recombinant protein in mice phenocopies the early clinical phase of the human disease in an IL-13-dependent manner. IL-33 inhibition of esophageal regulatory T cell function may induce loss of antigenic tolerance, thereby providing a mechanistic rationale for EoE development.
Keywords: IL-33; Th2; eosinophilic esophagitis; food allergy.
Copyright © 2016 the American Physiological Society.