High-throughput screening of a library of small polar molecules against Mycobacterium tuberculosis led to the identification of a phthalimide-containing ester hit compound (1), which was optimized for metabolic stability by replacing the ester moiety with a methyl oxadiazole bioisostere. A route utilizing polymer-supported reagents was designed and executed to explore structure-activity relationships with respect to the N-benzyl substituent, leading to compounds with nanomolar activity. The frontrunner compound (5h) from these studies was well tolerated in mice. A M. tuberculosis cytochrome bd oxidase deletion mutant (ΔcydKO) was hyper-susceptible to compounds from this series, and a strain carrying a single point mutation in qcrB, the gene encoding a subunit of the menaquinol cytochrome c oxidoreductase, was resistant to compounds in this series. In combination, these observations indicate that this novel class of antimycobacterial compounds inhibits the cytochrome bc1 complex, a validated drug target in M. tuberculosis.