Nuclear factor-erythroid 2 p45 (NF-E2 p45)-related factor 2 (Nrf2) is a master regulator of redox homoeostasis that allows cells to adapt to oxidative stress and also promotes cell proliferation. In this review, we describe the molecular mechanisms by which oxidants/electrophilic agents and growth factors increase Nrf2 activity. In the former case, oxidants/electrophiles increase the stability of Nrf2 by antagonizing the ability of Kelch-like ECH-associated protein 1 (Keap1) to target the transcription factor for proteasomal degradation via the cullin-3 (Cul3)-RING ubiquitin ligase CRL(Keap1). In the latter case, we speculate that growth factors increase the stability of Nrf2 by stimulating phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB)/Akt signalling, which in turn results in inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) and in doing so prevents the formation of a DSGIS motif-containing phosphodegron in Nrf2 that is recognized by the β-transducin repeat-containing protein (β-TrCP) Cul1-based E3 ubiquitin ligase complex SCF(β-TrCP). We present data showing that in the absence of Keap1, the electrophile tert-butyl hydroquinone (tBHQ) can stimulate Nrf2 activity and induce the Nrf2-target gene
Nad(p)h: quinone oxidoreductase-1 (NQO1), whilst simultaneously causing inhibitory phosphorylation of GSK-3β at Ser(9). Together, these observations suggest that tBHQ can suppress the ability of SCF(β-TrCP) to target Nrf2 for proteasomal degradation by increasing PI3K-PKB/Akt signalling. We also propose a scheme that explains how other protein kinases that inhibit GSK-3 could stimulate induction of Nrf2-target genes by preventing formation of the DSGIS motif-containing phosphodegron in Nrf2.
Keywords: NF-E2 p45-related factor 2 (Nrf2); epidermal growth factor; glycogen synthase kinase-3 (GSK-3); keratinocyte growth factor; phosphoinositide 3-kinase (PI3K); protein kinase B (PKB)/Akt; β-transducin repeat-containing protein (β-TrCP).
© 2015 Authors; published by Portland Press Limited.