Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042715. doi: 10.1103/PhysRevE.92.042715. Epub 2015 Oct 29.

Abstract

We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Lipid Bilayers / metabolism*
  • Micelles
  • Models, Biological*
  • Monte Carlo Method
  • Surface Tension
  • Thermodynamics
  • Tubulin / metabolism

Substances

  • Lipid Bilayers
  • Micelles
  • Tubulin